Statistical Hypothesis Testing Under Interval Uncertainty: An Overview

نویسندگان

  • Vladik Kreinovich
  • Hung T. Nguyen
  • Sa-aat Niwitpong
چکیده

An important part of statistical data analysis is hypothesis testing. For example, we know the probability distribution of the characteristics corresponding to a certain disease, we have the values of the characteristics describing a patient, and we must make a conclusion whether this patient has this disease. Traditional hypothesis testing techniques are based on the assumption that we know the exact values of the characteristic(s) x describing a patient. In practice, the value x̃ comes from measurements and is, thus, only known with uncertainty: x̃ 6= x. In many practical situations, we only know the upper bound ∆ on the (absolute value of the) measurement error ∆x def = x̃−x. In such situation, after the measurement, the only information that we have about the (unknown) value x of this characteristic is that x belongs to the interval [x̃−∆, x̃ + ∆]. In this paper, we overview different approaches on how to test a hypothesis under such interval uncertainty. This overview is based on a general approach to decision making under interval uncertainty, approach developed by the 2007 Nobelist L. Hurwicz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact hypothesis testing and confidence interval for mean of the exponential distribution under Type-I progressive hybrid censoring

 ‎Censored samples are discussed in experiments of life-testing; i.e‎. ‎whenever the experimenter does not observe the failure times of all units placed on a life test‎. ‎In recent years‎, ‎inference based on censored sampling is considered‎, ‎so that about the parameters of various distributions such as ‎normal‎, ‎exponential‎, ‎gamma‎, ‎Rayleigh‎, ‎Weibull‎, ‎log normal‎, ‎inverse Gaussian‎, ...

متن کامل

Tracking Interval for Doubly Censored Data with Application of Plasma Droplet Spread Samples

Doubly censoring scheme, which includes left as well as right censored observations, is frequently observed in practical studies. In this paper we introduce a new interval say tracking interval for comparing the two rival models when the data are doubly censored. We obtain the asymptotic properties of maximum likelihood estimator under doubly censored data and drive a statistic for testing the ...

متن کامل

LINEAR HYPOTHESIS TESTING USING DLR METRIC

Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...

متن کامل

Assessment of Green Supplier Development Programs by a New Group Decision-Making Model Considering Possibilistic Statistical Uncertainty

The assessment and selection of green supplier development programs are an intriguing and functional research subject. This paper proposes a group decision-making approach considering possibilistic statistical concepts under uncertainty to assess green supplier development programs (GSDPs) via interval-valued fuzzy sets (IVFSs). Possibility theory is employed to regard uncertainty by IVFSs. A n...

متن کامل

TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE

This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007